Gene Remodeling in Type 2 Diabetic Cardiomyopathy and Its Phenotypic Rescue with SERCA2a
نویسندگان
چکیده
BACKGROUND/AIM Diabetes-associated myocardial dysfunction results in altered gene expression in the heart. We aimed to investigate the changes in gene expression profiles accompanying diabetes-induced cardiomyopathy and its phenotypic rescue by restoration of SERCA2a expression. METHODS/RESULTS Using the Otsuka Long-Evans Tokushima Fatty rat model of type 2 diabetes and the Agilent rat microarray chip, we analyzed gene expression by comparing differential transcriptional changes in age-matched control versus diabetic hearts and diabetic hearts that received gene transfer of SERCA2a. Microarray expression profiles of selected genes were verified with real-time qPCR and immunoblotting. Our analysis indicates that diabetic cardiomyopathy is associated with a downregulation of transcripts. Diabetic cardiomyopathic hearts have reduced levels of SERCA2a. SERCA2a gene transfer in these hearts reduced diabetes-associated hypertrophy, and differentially modulated the expression of 76 genes and reversed the transcriptional profile induced by diabetes. In isolated cardiomyocytes in vitro, SERCA2a overexpression significantly modified the expression of a number of transcripts known to be involved in insulin signaling, glucose metabolism and cardiac remodeling. CONCLUSION This investigation provided insight into the pathophysiology of cardiac remodeling and the potential role of SERCA2a normalization in multiple pathways in diabetic cardiomyopathy.
منابع مشابه
Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility due to direct changes in heart muscle function independent of vascular disease. An important contributor to contractile dysfunction in the diabetic state is an impaired sarcoplasmic reticulum (SR) function, leading to disturbed intracellular calcium handling. We investigated whether overexpression of the SR calcium pump (...
متن کاملConditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility independent of vascular disease. A contributor to contractile dysfunction in the diabetic heart is impaired sarcoplasmic reticulum function with reduced sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) pump activity, leading to disturbed intracellular calcium handling. It is currently unclear whether increasing SERCA2...
متن کاملDiabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase.
Prolongation of relaxation is a hallmark of diabetic cardiomyopathy. Most studies attribute this defect to decreases in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) expression and SERCA2a-to-phospholamban (PLB) ratio. Since its turnover rate is slow, SERCA2a is susceptible to posttranslational modifications during diabetes. These modifications could in turn compromise conformational rea...
متن کاملResveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy.
Reduced sarcoplasmic calcium ATPase (SERCA2a) expression has been shown to play a significant role in the cardiac dysfunction in diabetic cardiomyopathy. The mechanism of SERCA2a repression is, however, not known. This study was designed to examine the effect of resveratrol (RSV), a potent activator of SIRT1, on cardiac function and SERCA2a expression in chronic type 1 diabetes. Adult male mice...
متن کاملTransgenic overexpression of the sarcoplasmic reticulum Ca2+ATPase improves reticular Ca2+ handling in normal and diabetic rat hearts.
Slowed relaxation in diabetic cardiomyopathy (CM) is partially related to diminished expression of the sarcoplasmic reticulum (SR) Ca2+-ATPase SERCA2a. To evaluate the impact of SERCA2a overexpression on SR Ca2+ handling in diabetic CM, we 1) generated transgenic rats harboring a human cytomegalovirus enhancer/chicken beta-actin promotor-controlled rat SERCA2 transgene (SERCA2-TGR), 2) characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009